Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
Yakugaku Zasshi ; 142(2): 155-164, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35110452

RESUMO

Boron neutron capture therapy (BNCT) is a type of radiation therapy and a new modality for cancer treatment. The radiation used in BNCT is a very low energy neutron called a "thermal neutron", and unlike other radiation, it has no effect on treating cancer on its own. However, when this neutron collides with boron-10 (10B), which is a stable isotope of boron, fission occurs into a high-energy helium nucleus (α-particle) and a lithium nucleus. Moreover, the effect of this fission reaction is limited to a range of about 10 µm, which corresponds to the approximate size of one cell. Therefore, the basic principle of BNCT is "cell-selective" radiation therapy that only damages cells that have taken up 10B present in the area irradiated with thermal neutrons. For the practical application of BNCT, it is indispensable to generate a boron drug capable of selectively accumulating 10B in cancer cells. We have successfully developed a boron drug for BNCT targeting amino acid transporters. We have obtained manufacturing and marketing approval for the world's first boron drug for BNCT, Steboronine® intravenous drip bag 9000 mg/300 mL (March 25, 2020), for indications of locally unresectable recurrent or advanced unresectable head and neck cancer. This uses Borofalan (10B), which is 10B introduced into l-phenylalanine, as a drug substance. This review describes the progress of drug development and future prospects of boron drugs for BNCT.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro , Desenvolvimento de Medicamentos/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Isótopos , Sistemas de Transporte de Aminoácidos , Boro/administração & dosagem , Boro/uso terapêutico , Humanos , Infusões Intravenosas , Isótopos/administração & dosagem , Isótopos/uso terapêutico , Nêutrons , Fissão Nuclear , Fenilalanina
2.
Health Phys ; 122(1): 84-124, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34898517

RESUMO

ABSTRACT: The purpose of this paper is to provide a methodology for the calculation of internal doses of radiation following exposure to radioactive fallout from the detonation of a nuclear fission device. Reliance is on methodology previously published in the open literature or in reports not readily available, though some new analysis is also included. Herein, we present two methodologic variations: one simpler to implement, the other more difficult but more flexible. The intention is to provide in one place a comprehensive methodology. Pathways considered are (1) the ingestion of vegetables and fruits contaminated by fallout directly, (2) the ingestion of vegetables and fruits contaminated by continuing deposition by rain- or irrigation-splash and resuspension, (3) the ingestion of vegetables and fruits contaminated by absorption of radionuclides by roots after tillage of soil, (4) the non-equilibrium transfer of short-lived radionuclides through the cow-milk and goat-milk food chains, (5) the equilibrium transfer of long lived radionuclides through milk and meat food chains, and (6) inhalation of descending fallout. Uncertainty in calculated results is considered. This is one of six companion papers that describe a comprehensive methodology for assessing both external and internal dose following exposures to fallout from a nuclear detonation. Input required to implement the dose-estimation model for any particular location consists of an estimate of the post-detonation external gamma-exposure rate and an estimate of the time of arrival of the fallout cloud. The additional data required to make such calculations are included in the six companion papers.


Assuntos
Cinza Radioativa , Animais , Bovinos , Feminino , Fissão Nuclear , Doses de Radiação , Cinza Radioativa/análise , Radioisótopos/análise
3.
Radiat Res ; 196(3): 272-283, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34237146

RESUMO

In the event of a fission-based weapon or improvised nuclear device (IND) detonation, dose coefficients can be harnessed to provide dose assessments for defense, emergency preparedness, and consequence management, as well as to prospectively inform the assessment of radiation biomarkers and development of medical prophylaxis countermeasures for defense and homeland security stakeholders and decision-makers. Although dose coefficients have previously been calculated for this group, they would apply specifically to the studied population, the 1945 Japanese cohort, after which their anthropomorphic computational phantoms were modeled. For this reason, applications to other populations may be limited, and instead, an assessment of a more standardized population is desired. We employed a series of computational human phantoms representing international reference individuals: UF/NCI voxel phantom series containing newborn, 1-, 5-, 10-, 15-, and 35-year-old males and females. Irradiation of the phantoms was simulated using the Monte Carlo N-Particle transport code to determine organ dose coefficients under four idealized irradiation geometries at three distances from the detonation hypocenter at Hiroshima and Nagasaki using DS02 free-in-air prompt neutron and photon fluence spectra. Through these simulations, age-specific dose coefficients were determined for individual organs. Various articulated PIMAL stylized phantoms were simulated as well to estimate the effect of body posture on dose coefficients and determine the effect of posture on dosimetric estimation and reconstruction. Results additionally demonstrate that 137Cs and the Watt fission spectra are not ideal general surrogate sources for fission weapons, which may be considered for experimental testing of medical countermeasures. Supplementary data provided tabulates the compilation of organ dose-rate coefficients in this study.


Assuntos
Simulação por Computador , Fissão Nuclear , Armas Nucleares , Radiometria/métodos , Adolescente , Adulto , Sobreviventes de Bombas Atômicas , Radioisótopos de Césio , Pré-Escolar , Relação Dose-Resposta à Radiação , Feminino , Humanos , Recém-Nascido , Japão , Masculino , Método de Monte Carlo , Especificidade de Órgãos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Radioisótopos/farmacocinética
5.
Health Phys ; 119(4): 504-516, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32881735

RESUMO

The Trinity test device contained about 6 kg of plutonium as its fission source, resulting in a fission yield of 21 kT. However, only about 15% of the Pu actually underwent fission. The remaining unfissioned plutonium eventually was vaporized in the fireball and after cooling, was deposited downwind from the test site along with the various fission and activation products produced in the explosion. Using data from radiochemical analyses of soil samples collected postshot (most many years later), supplemented by model estimates of plutonium deposition density estimated from reported exposure rates at 12 h postshot, we have estimated the total activity and geographical distribution of the deposition density of this unfissioned plutonium in New Mexico. A majority (about 80%) of the unfissioned plutonium was deposited within the state of New Mexico, most in a relatively small area about 30-100 km downwind (the Chupadera Mesa area). For most of the state, the deposition density was a small fraction of the subsequent deposition density of Pu from Nevada Test Site tests (1951-1958) and later from global fallout from the large US and Russian thermonuclear tests (1952-1962). The fraction of the total unfissioned Pu that was deposited in New Mexico from Trinity was greater than the fraction of fission products deposited. Due to plutonium being highly refractory, a greater fraction of the Pu was incorporated into large particles that fell out closer to the test site as opposed to more volatile fission products (such as Cs and I) that tend to deposit on the surface of smaller particles that travel farther before depositing. The plutonium deposited as a result of the Trinity test was unlikely to have resulted in significant health risks to the downwind population.


Assuntos
Poluentes Radioativos do Ar/análise , Exposição por Inalação/análise , Fissão Nuclear , Plutônio/análise , Cinza Radioativa/análise , Medição de Risco/métodos , Poluentes Radioativos do Solo/análise , Radioisótopos de Césio/análise , Humanos , Radioisótopos do Iodo/análise , Armas Nucleares/estatística & dados numéricos , Doses de Radiação , Monitoramento de Radiação
6.
Molecules ; 23(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060449

RESUMO

BACKGROUND: the gamma-emitting radionuclide Technetium-99m (99mTc) is still the workhorse of Single Photon Emission Computed Tomography (SPECT) as it is used worldwide for the diagnosis of a variety of phatological conditions. 99mTc is obtained from 99Mo/99mTc generators as pertechnetate ion, which is the ubiquitous starting material for the preparation of 99mTc radiopharmaceuticals. 99Mo in such generators is currently produced in nuclear fission reactors as a by-product of 235U fission. Here we investigated an alternative route for the production of 99Mo by irradiating a natural metallic molybdenum powder using a 14-MeV accelerator-driven neutron source. METHODS: after irradiation, an efficient isolation and purification of the final 99mTc-pertechnetate was carried out by means of solvent extraction. Monte Carlo simulations allowed reliable predictions of 99Mo production rates for a newly designed 14-MeV neutron source (New Sorgentina Fusion Source). RESULTS: in traceable metrological conditions, a level of radionuclidic purity consistent with accepted pharmaceutical quality standards, was achieved. CONCLUSIONS: we showed that this source, featuring a nominal neutron emission rate of about 1015 s-1, may potentially supply an appreciable fraction of the current 99Mo global demand. This study highlights that a robust and viable solution, alternative to nuclear fission reactors, can be accomplished to secure the long-term supply of 99Mo.


Assuntos
Molibdênio/química , Radioisótopos/química , Tecnécio/química , Ciclotrons/instrumentação , Fissão Nuclear , Compostos Radiofarmacêuticos , Pertecnetato Tc 99m de Sódio , Tomografia Computadorizada de Emissão de Fóton Único
7.
Int J Radiat Biol ; 93(6): 563-568, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28112567

RESUMO

In this study, the B6CF1 mice from the JANUS program at the Argonne National Laboratory were analyzed for increased cardiovascular disease (CVD) mortality from 60Co γ ray or fission neutron exposures administered in either a single dose or protracted weekly doses. The data used for this study represent the last studies conducted at Argonne and have been archived for at least 15 years. CVD mortality increased in a dose-dependent manner from γ rays as well as from neutron exposures. The relative biological effectiveness (RBE) for neutrons is about 4 or 5. CVD mortality appeared to be enhanced when the dose was protracted, with a DDREF (dose and dose rate effectiveness factor) in the range of 0.4-0.45 for neutron and gamma ray exposure, respectively.


Assuntos
Raios gama , Cardiopatias/mortalidade , Nêutrons , Exposição à Radiação/estatística & dados numéricos , Lesões por Radiação/mortalidade , Irradiação Corporal Total/mortalidade , Animais , Radioisótopos de Cobalto , Relação Dose-Resposta à Radiação , Feminino , Cardiopatias/patologia , Masculino , Camundongos , Fissão Nuclear , Doses de Radiação , Lesões por Radiação/patologia , Eficiência Biológica Relativa , Taxa de Sobrevida
8.
Public Underst Sci ; 26(3): 307-324, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27436112

RESUMO

This research examines the evolution of nuclear technology in Spain from the early years of the Franco dictatorship to the global financial crisis and technology's influence on Spanish culture. To this end, we take a sociological perspective, with science culture and social perceptions of risk in knowledge societies serving as the two elements of focus in this work. In this sense, this article analyses the transformation of social relationships in light of technological changes. We propose technology as a strategic place to observe the institutional and organisational dynamics of technologic-scientific risks, the expert role and Spain's science culture. In addition, more specifically, within the language of co-production, we 'follow the actor' and favour new forms of citizen participation that promote ethics to discuss technological issues.


Assuntos
Fissão Nuclear , Centrais Nucleares/história , Opinião Pública , Tecnologia/história , História do Século XX , História do Século XXI , Espanha , Tecnologia/instrumentação
9.
J Nucl Med ; 58(3): 514-517, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27688474

RESUMO

99Mo, the parent of the widely used medical isotope 99mTc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99Mo production run are presented.


Assuntos
Molibdênio/química , Fissão Nuclear , Aceleradores de Partículas/instrumentação , Radioisótopos/química , Geradores de Radionuclídeos/instrumentação , Compostos de Urânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Marcação por Isótopo/instrumentação , Marcação por Isótopo/métodos , Teste de Materiais , Nêutrons , Reatores Nucleares , Projetos Piloto , Doses de Radiação , Compostos Radiofarmacêuticos/síntese química , Compostos de Urânio/efeitos da radiação
10.
Health Phys ; 111(1): 17-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27218290

RESUMO

Delayed gamma spectrum is the fingerprint of uranium materials in arms control verification technology. The decay chain is simplified into basic state linear chain and excitation state linear chain to calculate and analyze the delayed gamma spectra of fission products. Formulas of the changing rule for nuclide number before and after zero-time are deduced. The C program for calculating the delayed gamma ray spectra data is constructed, and related experiments are conducted to verify this theory. Through analysis of the delayed gamma counts of several nuclides, the calculated results are found to be consistent with experimental values.


Assuntos
Algoritmos , Teste de Materiais/métodos , Fissão Nuclear , Radiometria/métodos , Software , Urânio/análise , Urânio/química , Meia-Vida , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Urânio/efeitos da radiação
11.
Environ Sci Technol ; 49(22): 13676-83, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26513644

RESUMO

One of the main challenges faced by the nuclear industry is the long-term confinement of nuclear waste. Because it is inexpensive and easy to manufacture, cement is the material of choice to store large volumes of radioactive materials, in particular the low-level medium-lived fission products. It is therefore of utmost importance to assess the chemical and structural stability of cement containing radioactive species. Here, we use ab initio calculations based on density functional theory (DFT) to study the effects of (90)Sr insertion and decay in C-S-H (calcium-silicate-hydrate) in order to test the ability of cement to trap and hold this radioactive fission product and to investigate the consequences of its ß-decay on the cement paste structure. We show that (90)Sr is stable when it substitutes the Ca(2+) ions in C-S-H, and so is its daughter nucleus (90)Y after ß-decay. Interestingly, (90)Zr, daughter of (90)Y and final product in the decay sequence, is found to be unstable compared to the bulk phase of the element at zero K but stable when compared to the solvated ion in water. Therefore, cement appears as a suitable waste form for (90)Sr storage.


Assuntos
Materiais de Construção , Resíduos Radioativos , Radioisótopos de Estrôncio/química , Compostos de Cálcio/química , Fissão Nuclear , Silicatos/química , Água/química
12.
Nuklearmedizin ; 54(6): N50-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26478117

RESUMO

The history of the early identification of elements and their designation to the Mendeleev Table of the Elements was an important chapter in German science in which Ida (1896-1978) and Walter (1893-1960) Noddack played an important role in the first identification of rhenium (element 75, 1925) and technetium (element 43, 1933). In 1934 Ida Noddack was also the first to predict fission of uranium into smaller atoms. Although the Noddacks did not for some time later receive the recognition for the first identification of technetium-99m, their efforts have appropriately more recently been recognized. The discoveries of these early pioneers are even more astounding in light of the limited technologies and resources which were available during this period. The Noddack discoveries of elements 43 and 75 are related to the subsequent use of rhenium-188 (beta/gamma emitter) and technetium-99m (gamma emitter) in nuclear medicine. In particular, the theranostic relationship between these two generator-derived radioisotopes has been demonstrated and offers new opportunities in the current era of personalized medicine.


Assuntos
Medicina Nuclear/história , Física Nuclear/história , Compostos Radiofarmacêuticos/história , Rênio/história , Tecnécio/história , Nanomedicina Teranóstica/história , Alemanha , História do Século XX , Fissão Nuclear
14.
Phys Med Biol ; 60(3): 931-46, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25574934

RESUMO

The irradiation of a thorium target by light charged particles (protons and deuterons) leads to the production of several isotopes of medical interest. Direct nuclear reaction allows the production of Protactinium-230 which decays to Uranium-230 the mother nucleus of Thorium-226, a promising isotope for alpha radionuclide therapy. The fission of Thorium-232 produces fragments of interest like Molybdenum-99, Iodine-131 and Cadmium-115g. We focus our study on the production of these isotopes, performing new cross section measurements and calculating production yields. Our new sets of data are compared with the literature and the last version of the TALYS code.


Assuntos
Fissão Nuclear , Medicina Nuclear/métodos , Radioisótopos/química , Tório/química , Tório/efeitos da radiação
15.
Health Phys ; 107(6): 530-3, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25353238

RESUMO

In recent years, the National Calibration Reference Centre for Bioassay and In Vivo Monitoring (NCRC) at the Radiation Protection Bureau (RPB), Health Canada, has been conducting investigations with black tea to develop a matrix that can be used to replace urine in each of the following performance testing programs (PTP): (1) tritium, (2) carbon-14, (3) the DUAL (i.e., 3H/14C), and (4) fission/activation products (F/AP). A 1% tea solution with thimerosal, which had worked successfully for tritium, carbon-14, and the DUAL, was selected and tested for the F/AP PTP because of its similarity to urine in color and UV-VIS spectra. However, application of this tea to samples of the F/AP program containing 133Ba, 137Cs, 57Co, and 60Co produced precipitates, which was an unexpected result. Further experiments showed that replacement of thimerosal with an alcohol at about 5% eliminated the precipitation problem. The alcohol can be ethanol, methanol, or isopropanol. In the experiments, the 1% tea, preserved with alcohol, remained clear and stable for at least 100 d. The duration of each PTP for the NCRC is limited to 90 d. Application of the CNSC S-106 regulatory standard to the tea produced acceptable accuracy and precision results. It was concluded that a suitable tea matrix for the F/AP program had been found.


Assuntos
Bioensaio/normas , Radioisótopos de Carbono , Monitoramento de Radiação/normas , Proteção Radiológica/normas , Chá/química , Trítio/análise , Urina/química , Calibragem , Humanos , Fissão Nuclear , Liberação Nociva de Radioativos
16.
17.
J Environ Radioact ; 137: 88-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25014883

RESUMO

Nuclear weapons represent one of the most immediate threats of mass destruction. In the event that a procured or developed nuclear weapon is detonated in a populated metropolitan area, timely and accurate nuclear forensic analysis and fallout modeling would be needed to support attribution efforts and hazard assessments. Here we demonstrate that fissiogenic xenon isotopes retained in radioactive fallout generated by a nuclear explosion provide unique constraints on (1) the timescale of fallout formation, (2) chemical fractionation that occurs when fission products and nuclear fuel are incorporated into fallout, and (3) the speciation of fission products in the fireball. Our data suggest that, in near surface nuclear tests, the presence of a significant quantity of metal in a device assembly, combined with a short time allowed for mixing with the ambient atmosphere (seconds), may prevent complete oxidation of fission products prior to their incorporation into fallout. Xenon isotopes thus provide a window into the chemical composition of the fireball in the seconds that follow a nuclear explosion, thereby improving our understanding of the physical and thermo-chemical conditions under which fallout forms.


Assuntos
Fissão Nuclear , Armas Nucleares , Monitoramento de Radiação , Cinza Radioativa/análise , Isótopos de Xenônio/análise , Modelos Teóricos , Fatores de Tempo
18.
Photosynth Res ; 122(1): 87-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24861897

RESUMO

William A. Arnold discovered many phenomena in photosynthesis. In 1932, together with Robert Emerson, he provided the first experimental data that led to the concept of a large antenna and a few reaction centers (photosynthetic unit); in 1935, he obtained the minimum quantum requirement of 8-10 for the evolution of one O2 molecule; in 1951, together with Bernard L. Strehler, he discovered delayed fluorescence (also known as delayed light emission) in photosynthetic systems; and in 1956, together with Helen Sherwood, he discovered thermoluminescence in plants. He is also known for providing a solid-state picture of photosynthesis. Much has been written about him and his research, including many articles in a special issue of Photosynthesis Research (Govindjee et al. (eds.) 1996); and a biography of Arnold, by Govindjee and Srivastava (William Archibald Arnold (1904-2001), 2014), in the Biographical Memoirs of the US National Academy of Sciences, (Washington, DC). Our article here offers a glimpse into the everyday life, through stories and photographs, of this remarkable scientist.


Assuntos
Fotossíntese , Biofísica/história , Fluorescência , História do Século XX , História do Século XXI , Fissão Nuclear , Oxigênio/história , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/história , Estados Unidos
19.
J Environ Radioact ; 132: 1-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24508948

RESUMO

Airborne radioactive particles released by the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in 2011 were collected with a cascade low-pressure impactor at the Japan Atomic Energy Agency (JAEA) in Tokai, Japan, 114 km south of the FDNPP. Size-fractionated samples were collected twice, in the periods of March 17-April 1, 2011, and May 9-13, 2011. These size-fractionated samplings were carried out in the earliest days at a short distance from the FDNPP. Radioactivity of short-lived nuclides (several ten days of half-life) was determined as well as (134)Cs and (137)Cs. The elemental composition of size-fractionated samples was also measured. In the first collection, the activity median aerodynamic diameter (AMAD) of (129m)Te, (140)Ba, (134)Cs, (136)Cs and (137)Cs was 1.5-1.6 µm, while the diameter of (131)I was 0.45 µm. The diameters of (134)Cs and (137)Cs in the second collection were expressed as three peaks at <0.5 µm, 0.94 µm, and 7.8 µm. The (134)Cs/(137)Cs ratio of the first collection was 1.02 in total, but the ratio in the fine fractions was 0.91. A distribution map of (134)Cs/(137)Cs - (136)Cs/(137)Cs ratios was helpful in understanding the change of radioactive Cs composition. The Cs composition of size fractions <0.43 µm and the composition in the 1.1-2.1 µm range (including the AMAD of 1.5-1.6 µm) were similar to the calculated compositions of fuels in the reactors No. 1 and No. 3 at the FDNPP using the ORIGEN-II code. The Cs composition collected in May, 2011 was similar to the calculation results of reactor No. 2 fuel composition. The change of Cs composition implies that the radioactive Cs was released from the three reactors at the FDNPP via different processes.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação/métodos , Aerossóis , Poluentes Radioativos do Ar/análise , Radioisótopos de Bário/análise , Radioisótopos de Césio/análise , Geografia , Radioisótopos do Iodo/análise , Japão , Fissão Nuclear , Centrais Nucleares , Tamanho da Partícula , Liberação Nociva de Radioativos , Radioisótopos/análise , Telúrio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...